

MULTIDOS Weighfeeder[®]

MULTIDOS® Weighfeeder Version 4

- Weighfeeder for bulk solids of most diverse properties
- Wide performance range
- MechaTronic design with integrated electronics
- Safe belt run monitoring and tracking
- Easy belt change without auxiliaries

Application

Schenck Process weighfeeders are used for continuous gravimetric feeding of bulk solids.

Their rugged design makes them suitable for the harsh demands of industrial operation in the rock, sand and gravel, metal and basic material, chemical and animals feed industries.

Application oriented types and the high quality standard of the Schenck Process weighfeeders ensure economical solutions even to highly sophisticated feeding tasks. The first-class measuring, control and supervisory electronics enables comprehensive monitoring of weighfeeders.

The MechaTronic variant permits easy integration into plant control at a very reasonable price. This results in:

- Minimal investment and sequential costs (operating and maintenance costs)
- ittle installation effort and low space requirements
- Improved accuracy and quality of the final product.

Construction

The weighfeeder standard equipment comrises:

- Rugged feeder mechanics
- Automatic belt tracking
- Plough scraper (diverting foreign objects on return belt to the side)
- Belt outside scraper
- Static belt tension through take-up screws integrated in frame
- Belt influence compensation (BIC).

For the many and varied applications, the following accessories are available:

- Dust-tight enclosure of varying extent:
 - Discharge hood
 - Belt cover
 - Rear enclosure
 - Complete enclosure
- Integral chain conveyor for cleaning of mounting surface.

Operating Principle

Designed for continuous feeding as well as for the batching of bulk solids, the MULTIDOS weighfeeder consists of:

- Belt conveyor
- Drive with speed transducer for belt speed acquisition
- Material prefeeder, e.g. hopper with bed depth setter
- Integrated belt scale, and
- Measuring and control electronics.

The electronic measuring and control system is designed to determine feed rate m (kg/hr) by multiplication of belt load q (kg/m) and belt speed v (m/s), and to keep the preset feed rate value constant with the use of a closed-loop control.

For weighfeeder function and accuracy, the belt scale assembly is of central importance.

The Schenck Process weighfeeders use electronic single-idler belt scales. One idler is acquired by two hermetically sealed stainless straingauge load cells.

The weighing electronics measures the resulting force G of the material located on the above belt section between the two opposed carrying idler. Belt load q results from the quotient from force G and the distance between the two idlers, i.e. weigh span L.

Feed rate is computed from value q multiplied by the belt speed.

Feed rate totalization over the time finally supplies the amount fed out.

The belt influence is considered with the aid of the belt influence compensation (BIC).

The infeed hopper is an essential prerequisite for the reliable operation of the weighfeeder. Various types can be selected in accordance with material properties:

- Feed hoppers mechanically designed for specific materials
- Vibration feed hoppers for bridging materials
- Settling chambers for fluidizable material.

Variants

MULTIDOS M

Dimensions

- Belt widths [mm]: 650, 800, 1000, 1200, 1400
- Distance pulley to pulley [mm]: 1500, 2000, 2700, 3500, 4000, 5000, 6000, 7000, 8000
- Dust-tight enclosure

MULTIDOS H

Dimensions

- Belt widths [mm]: 1400, 1600, 1800, 2000
- Distance pulley to pulley [mm]: 2700, 3500, 4500, 5500, 6500, 7500

Version 1

Without auxiliaries

Version 3

With auxiliaries: Discharge hood and belt cover

Technical Data

Accuracy (related to actual value): Conveying speed: Material temperature.: $\pm~0.25$ to 0.5 % max. 0.5 m/s 80° C with standard, 130° C and 170° C with special variants

MULTIDOS M								
Belt width [mm]	Feed rate max.							
	Volumetric m ³ /h	Gravimetric t/h (with γ=1.5 t/m ³)						
650	70	100						
800	150	220						
1000	250	350						
1200	350	500						
1400	450	700						

MULTIDOS H Belt width Feed rate max. [mm] Gravimetric t/h Volumetric m³/h (with γ =1.5 t/m³) 690 1400 1030 1600 800 1200 1800 915 1370 2000 1025 1530 -----------

Version 2

With auxiliary: Discharge hood

Version 4 With auxiliaries: Discharge hood, belt cover and dust protective cover

Dimensions

MULTIDOS M

Di-	Distance pulley to pulley* A [mm]							Belt width BB [mm]						
men- sion	1500	2000	2700	3500	4000	5000	6000	7000	8000	650	800	1000	1200	1400
В	1183	1183	1583	2213	2713	3713	4713	5713	6713					
С	430	930	1230	1400	1400	1400	1400	1400	1400					
D	2312	2812	3512	4312	4812	5812	6812	7812	8812					
E	305	305	305	305	305	305	305	305	305					
F	195	195	195	195	195	195	195	195	195					
G										350	500	700	900	1100
Н										1030	1230	1430	1630	1830
I										1300	1500	1700	1900	2100
К										410	410	410	410	410

MULTIDOS H

Di-	Distance pulley to pulley* A [mm]							Belt width BB [mm]				
men- sion	2700	3500	4500	5500	6500	7500	1400	1600	1800	2000		
В	1732	1732	1732	1732	1732	1732						
С	1000	1800	2800	3800	4800	5800						
D	3731	4531	5531	6531	7531	8531						
E	384	384	384	384	384	384						
F	269	269	269	269	269	269						
G							1325	1525	1725	1925		
Н							1915	2115	2315	2515		
I							2365	2565	2765	2965		
K							638	638	638	638		

* Further pulley distances on request

Schenck Process GmbH Pallaswiesenstr. 100 64293 Darmstadt, Germany T +49 6151 1531-1216 F +49 6151 1531-1172 sales@schenckprocess.com www.schenckprocess.com